FIBは、数nm~数百nm径に集束したイオンビームのことで試料表面を走査させることにより特定領域を削ったり成膜することが可能です
FIBは、数nm~数百nm径に集束したイオンビームのことで、試料表面を走査させることにより、特定領域を削ったり(スパッタ)、特定領域に炭素(C)・タングステン(W)・プラチナ(Pt)等を成膜することが可能です。また、イオンビームを試料に照射して発生した二次電子を検出するSIM像により、試料の加工形状を認識できます。 ・微小領域(数nm~数十μm)のエッチングによる任意形状加工が可能 (通常加工サイズ:~20μm程度) ・SEM・SEM-STEM・TEM像観察用試料作製(特定箇所の断面出しが可能) ・微細パターン(数μm~数十μm)のデポジション薄膜形成が可能(C・W・Ptの成膜) ・高分解能(加速電圧30kV:4nm)でのSIM(Scanning Ion Microscope)像観察が可能 ・SIM像で金属結晶粒(Al, Cu等)の観察が可能
FIBは、数nm~数百nm径に集束したイオンビームのことで、試料表面を走査させることにより、特定領域を削ったり(スパッタ)、特定領域に炭素(C)・タングステン(W)・プラチナ(Pt)等を成膜することが可能です。また、イオンビームを試料に照射して発生した二次電子を検出するSIM像により、試料の加工形状を認識できます。 ・微小領域(数nm~数十μm)のエッチングによる任意形状加工が可能 (通常加工サイズ:~20μm程度) ・SEM・SEM-STEM・TEM像観察用試料作製(特定箇所の断面出しが可能) ・微細パターン(数μm~数十μm)のデポジション薄膜形成が可能(C・W・Ptの成膜) ・高分解能(加速電圧30kV:4nm)でのSIM(Scanning Ion Microscope)像観察が可能 ・SIM像で金属結晶粒(Al, Cu等)の観察が可能