シュレーディンガー株式会社

【事例】アクティブラーニングで有機EL材料の設計を高速化

最終更新日: 2022-08-12 16:25:29.0

上記では、電子ブックの一部をご紹介しております。

カタログ発行日:2022/08/12
高効率・高コスパ! 物理ベースのシミュレーションと機械学習の相乗効果を光電子物性予測に活用するアクティブラーニング ワークフロー
分子モデリングとシミュレーションのツールは、材料探索に有効であることが証明されており、産業界の研究開発においてますます導入が進んでいます。
デジタルシミュレーションは、従来の実験的アプローチと比較して研究開発ワークフローに多大な時間短縮をもたらしますが、課題も残されています。
シュレーディンガーは、これらの課題を容易に扱えるようにしました。近年、シュレーディンガーは、物理ベースのシミュレーションと機械学習の相乗効果を光電子物性予測に活用するアクティブラーニング ワークフローを開発しました。

Frontiers in Chemistryに掲載され、SID-Display Week 2022で発表されたシュレーディンガーによる最近の研究は、有機EL材料探索のためのアクティブラーニングパラダイムを実証しています。

※詳しくはPDF資料をご覧いただくか、お気軽にお問い合わせ下さい。

関連情報

マテリアルズ・インフォマティクス向けAIプラットフォーム【簡易版
マテリアルズ・インフォマティクス向けAIプラットフォーム【簡易版 製品画像
※詳しくは、お気軽にお問い合わせ下さい。

■様々なモノ(エンティティ)に対応
#低分子
#ペプチド #オリゴ #RNA配合
#無機複合体 #触媒 #有機EL
#添加剤 #金属錯体

■シュレーディンガーのMaterials Science Suiteの計算手法を融合することも可能です。

#有機エレクトロニクス
#高分子材料
#消費財
#触媒および反応システム
#半導体
#エネルギーの回収と貯蔵
#複雑な処方
#金属 #合金 #セラミック
【資料】有機エレクトロニクス
【資料】有機エレクトロニクス 製品画像
アモルファス構造や結晶構造の正孔(ホール)移動度と電荷(チャージ)移動度に関しては、Marcus(マーカス)理論に基づいた2種類の異なる方法(kinetic Monte Carlo(動的モンテカルロ)法と、Electronic Coupling(電子カップリング)に基づいた方法)を使用して計算可能です。
また、スピン-軌道カップリングを考慮したTDDFT計算を使用して、分子の光吸収や発光を予測することもできます。

※詳しくはPDF資料をご覧いただくか、お気軽にお問い合わせ下さい。

【資料掲載内容】
Jaguarプログラムを使用した、NPB, mCP, Ir(ppy)3, AlQ3の有機エレクトロニクスに関するプロパティ(HOMO, LUMOエネルギー準位, 電子と正孔の再配列エネルギー, 三重項励起状態エネルギー)の計算。Desmondプログラムを使用したNPT分子動力学計算による有機正孔輸送材料TPDのガラス転移温度(Tg)と熱膨張係数(CTE)。正孔輸送材料NPB,CzC, 2TnATA, TCTA, TPD, spiro-TPD, o-BPD, m-BPD, p-BPDの電荷移動度予測。

お問い合わせ

下記のフォームにお問い合わせ内容をご記入ください。
※お問い合わせには会員登録が必要です。

至急度  必須
ご要望  必須
目的  必須
添付資料
お問い合わせ内容 
【ご利用上の注意】
お問い合わせフォームを利用した広告宣伝等の行為は利用規約により禁止しております。
はじめてイプロスをご利用の方 はじめてイプロスをご利用の方 すでに会員の方はこちら
イプロス会員(無料)になると、情報掲載の企業に直接お問い合わせすることができます。
メールアドレス

※お問い合わせをすると、以下の出展者へ会員情報(会社名、部署名、所在地、氏名、TEL、FAX、メールアドレス)が通知されること、また以下の出展者からの電子メール広告を受信することに同意したこととなります。

シュレーディンガー株式会社

カタログ 材料開発全般、機械学習一覧(34件)を見る